Skip to main content

The Spark of Life – electricity in the body.

What is the link between a lightning flash, the poet Percy Shelley and a cure for diabetes? It is the kind of question you might hear on a radio quiz program such as ‘Brain of Britain’. The quest for an answer takes us on an exciting scientific journey with unexpected twists and turns. It is an extraordinary voyage of discovery, beautifully navigated for us by the distinguished Oxford scientist, Professor Frances Ashcroft in her book “The Spark of Life”, which she discusses with Denis Noble for Voices from Oxford.

Since the 18th Century Italian physician Luigi Galvani showed that an electric shock can cause muscles to twitch, scientists have been fascinated by the role of electricity in life.  Modern science has discovered that electric currents flow in and out of cells in the body mediating and initiating their function.

All cells in the body in all organisms on earth, “from the simplest bacteria to the trees in the giant redwood forests of California” have tiny protein structures in the cell membrane which can pass electric currents in the form of ions, “charged atoms”, such as sodium, potassium and calcium. 

Frances Ashcroft is particularly interested in how sugar levels in the body are controlled.  If it falls too low then the brain is starved of fuel; if it remains high for too long then it can cause the complications of diabetes. Blood sugar levels are regulated by the hormone, Insulin, released from the pancreas in response to a rise in blood sugar. “We and others discovered a tiny protein pore which is found in the membranes of the insulin secreting cells.” She explains. “When the pore is open insulin is not released, and when it’s shut insulin is released.” When blood sugar levels rise the pore shuts and this triggers a cascade of events resulting in insulin release.

By making mutations of the gene for the protein pore it is possible to understand how the protein pore works, and also, as Professor Ashcroft says, “there are mutations resulting from accidents of nature which may lead to disease.” In one mutation she is working on the protein pore remains open, insulin is not released, glucose levels remain high “and then you get diabetes.”

What Frances Ashcroft and her colleagues realised was that the pores could be closed by drugs, sulfonylureas that were already in routine clinical use for late onset diabetes. Those who have the mutation are born with the disease, and are dependent on regular insulin injections. But it was realised that the existing drugs could be used to close the pores and release insulin. Frances Ashcroft tells us about the excitement of this important discovery and the impact it has had on people’s lives. A truly breathtaking result. 
  
Understanding electricity and how it works in the body has led to the development of new treatments for diseases. Disease caused by mutations in protein pores has now been given its own name “channelopathy”. An example is one found in goats that causes them to fall down. But what is really significant is that this is similar to the human condition myotonia congenita, where muscles lock up when the patient is startled. Understanding channelopathies has the potential for development of treatments for such diseases.

In one sense Frances Ashcroft says “we are nothing more than soup and sparks”.  Or as Percy Shelley put it “...man is a mass of electrified clay.”

This article is also published by Voices from Oxford

Voices from Oxford video link

Comments

Popular posts from this blog

Prioritising people in nursing care.

There has been in recent years concern that care in the NHS has not been sufficiently 'patient centred', or responsive to the needs of the patient on a case basis. It has been felt in care that it as been the patient who has had to adapt to the regime of care, rather than the other way around. Putting patients at the centre of care means being responsive to their needs and supporting them through the process of health care delivery.  Patients should not become identikit sausages in a production line. The nurses body, the Nursing and Midwifery Council has responded to this challenge with a revised code of practice reflection get changes in health and social care since the previous code was published in 2008. The Code describes the professional standards of practice and behaviour for nurses and midwives. Four themes describe what nurses and midwives are expected to do: prioritise people practise effectively preserve safety, and promote professionalism and trust. The

The internet trails of Ants

Ants share, and they are built to do just that.  They walk and talk to cooperate in all they do.  Ants have two stomachs, with the second one set aside for storing food to be shared with other ants.  Ants get pretty intimate when meeting each other.  The ants kiss, but this kiss isn't any ordinary kind of kiss. Instead, they regurgitate food and exchange it with one another.  By sharing saliva and food,  ants communicate.  Each ant colony has a unique smell, so members recognize each other and sniff out intruders. In addition, all ants can produce pheromones, which are scent chemicals used for communication and to make trails. Ants are problem solvers.  We may recall the problems puzzles we were given as children. We look to see if the pieces will fit.  Jiz saw puzzles are much the same but with many contextual factors. First, the picture tells a story. Then, once we know what the image might be, it becomes easier to see which pieces to look for.  Ants lay down trails. Just as we f

The Thin End account of COVID Lockdown